Projekte
Es wurden 29 Einträge gefunden.
Abwasser-Kreislauf. Kaskadische Verwertung der Abwasser- und organischen Reststoffströme in Gebäuden
Es wird Grundlagenforschung für ein nachhaltiges kreislauforientiertes System zur gebäudeintegrierten Verwertung von Abwasser und Speiseresten betrieben. Dieses umfasst Nährstoffrückgewinnung für ein nachhaltiges Kreislaufsystem (Erzeugung von Pflanzendünger und Biokohle), Stromproduktion für die Bedarfsdeckung (bis 15 %) von Plus-Energie-Gebäuden, sowie Nutzwassergewinnung für die Bewässerung objekteigener oder urbaner Begrünung und zur Sommerkühlung.
BATTBOX - BATTeryrecycling Best Operations by X-processes for circular battery ecosystem
Im Projekt BATTBOX werden Antriebsbatterien der E-Mobilität auf deren Kreislauffähigkeit analysiert. Dabei werden Aufbau und Struktur von Batteriesystemen untersucht und betreffend Gefahrenpotential bewertet. Darauf aufbauend werden Handlings- und Bearbeitungsprozesse entwickelt, um den Produktlebenszyklus hinsichtlich Sicherheit und Kreislauffähigkeit zu verbessern und zu optimieren.
Biokustik - Akustikpaneele im kreislaufgeführten Faserguss mit Holzfasern
Das Konsortium bestehend aus zwei Unternehmens- und zwei Forschungspartnern verfolgt das Ziel, den natürlichen Holzfaserstoff, aus dem ohne Zugabe von Bindemitteln normalerweise Hartfaserplatten im sogenannten Nassverfahren hergestellt werden, für eine Verarbeitung in der kreislauffähigen Faserguss-Technologie tauglich zu machen und mit dem entwickelten Faserstoff und Faserguss-Verfahren ein Akustikpaneel für eine verbesserte Raumakustik zu designen. Das neue Akustikpaneel kann nach Rezyklierung wieder für die Verarbeitung zu neuen Faserguss-Formteilen verwendet werden und hat das Potential, gängige Akustikpaneele aus umweltbelastenden Materialien zu ersetzen.
BitKOIN - CO2-reduzierte Bindemittel durch thermochemische Konversion mineralwolleabfallhaltiger Reststoffkombinationen
Im Projekt BitKOIN werden konzeptionelle, experimentelle und modellhafte Forschungstätigkeiten zur Entwicklung eines Hüttensandsubstituts ("Hüttensand 2.0") durchgeführt. Zunächst werden repräsentative Stichproben von Mineralwolle- und weiteren mineralischen Abfällen, die als Korrekturstoffe zur Erzielung des gewünschten Chemismus erforderlich sind, entnommen und chemisch, mineralogisch und physikalisch charakterisiert sowie abfallrechtlich eingestuft. Durch thermochemische Konditionierung der Mineralwolleabfälle mit weiteren Reststoffen wird der „Hüttensand 2.0“ entwickelt. Ziel des Projekts ist der Funktionsnachweis eines Systems zum Recycling von Mineralwolleabfällen durch Entwicklung des langlebigen "Hüttensand 2.0".
CreeS - Chromfreie Schlacke
Das Projekt CreeS („Chrom free Slag“) entwickelt ein innovatives technologisches Konzept zur Herstellung chromfreier Edelstahlschlacken (EDS) für die nachhaltige Zement- und Stahlindustrie. Durch gezielte Schwermetallentfernung und die Rückführung entstehender Materialströme wird eine ressourcenschonende Verwertung ermöglicht, die CO₂-Emissionen senkt, natürliche Ressourcen schont und die Kreislaufwirtschaft fördert. Das systemübergreifende Verfahren schafft ökologische und ökonomische Vorteile, die auf andere Schlackentypen übertragbar sind.
CycLR - Komponententrennung und Inwertsetzung von Lack-Reststoffen
In dem Projekt CycLR wird die Implementierung einer Kreislaufwirtschaft für Wasserlacke angestrebt. Unter Berücksichtigung aller Beteiligten der Wertschöpfungskette wird ein Recyclingverfahren ausgearbeitet, das die Inwertsetzung der Rezyklate ermöglicht.
DeB-AT – Detektion und Ausschleusung von Batterien aus gemischten Abfällen mittels Sensorik und künstlicher Intelligenz
Das Projekt DeB-AT plant die Entwicklung der gezielten Ausschleusung von Batterien aus gemischten Abfallstoffströmen im Maßstab eines Labor- bzw. Technikumsdemonstrators. Die Konzeption folgt der methodischen Erarbeitung der notwendigen Anforderungen der optischen Sensorik und der Ausschleusungstechnologie zur KI-unterstützten Detektion der Grundgesamtheit von Batterien.
DiRecT – Direktes Recycling und Upcycling von Titanspänen
Im Projekt DiRecT werden verschiedene neuartige Technologien entwickelt und evaluiert, die es ermöglichen, die bei der Herstellung hochwertiger Titanerzeugnisse anfallenden Späne direkt zu recyceln oder daraus direkt endformnahe Bauteile oder verbesserte Halbzeuge herzustellen (Upcycling).
EPSolutely - Entwicklung eines Kreislaufwirtschaftskonzepts in der Kunststoffindustrie am Beispiel EPS
In einer systemumfassenden Zusammenarbeit aller relevanten Akteure des EPS-Wertschöpfungssystems werden Konzepte, Technologien und Methoden für eine EPS-Kreislaufwirtschaft entwickelt. Die Integration in ein Gesamtkonzept mit optimierten Logistik- und Transportsystemen soll die Transformation linearer EPS-Wertschöpfungssysteme in eine Kreislaufwirtschaft ermöglichen.
Förderungen in der Kreislaufwirtschaft
In diesem Projekt wurden mittels online-Recherchen und Expert:innen-Befragungen Förderungsmöglichkeiten für Projekte und Maßnahmen im Bereich Kreislaufwirtschaft gesammelt und in eine Datenbank überführt, die zur Suche geeigneter Förderungsschienen dient.
Green-TUrbine - Nachhaltige Produktion und Lebenszyklusoptimierung von Pelton-Laufrädern durch Wire-Arc Additive Manufacturing
Das Projekt Green-TUrbine untersucht die Integration der WAAM-Technologie in den Lebenszyklus von Pelton-Turbinen. Es werden die Prinzipien "Rethink, Reduce, Reuse" angewendet, um die Fertigung, den Ressourcenverbrauch und die Wiederverwendung der Laufräder zu optimieren. Eine umfassende LCA soll dabei die ökologischen und ökonomischen Auswirkungen bewerten.
KI-gesteuerte Dekontaminierungstechnologien für Wiederverwendung/Recycling zur Erfüllung von Vorschriften für den Kontakt mit Lebensmitteln unter Verwendung von Licht (Light-AIClean)
Das Projekt zielt darauf ab, einen chemometrisch unterstützten Dekontaminationsprozess (DC) für Kunststoffabfälle mit KI-gestützter Qualitätskontrolle sowie eine auf erneuerbarer Energie basierende DC-Technologie zu entwickeln. Durch die Nutzung von sichtbarem Licht und einem wiederverwendbaren, katalytischen System sollen ressourcenintensive Methoden wie Heißwasserreinigung und Gamma-Bestrahlung ersetzt werden. KI-Techniken, einschließlich neuronaler Netzwerke und Reinforcement Learning, optimieren die Effizienz und reduzieren den Ressourcenverbrauch. Der Prozess wird in einem Photoreaktor und einem automatisierten DC-Setup getestet, um die Recyclingindustrie, KI-Entwickler und die Umweltverträglichkeit zu fördern und die Prinzipien der Kreislaufwirtschaft zu unterstützen.
KLW-Komp - Kreislaufwirtschaftskompass
Im Projekt Kreislaufwirtschaftskompass wurde ein responsives Online-Self-Assessment-Tool für Kreislaufwirtschaft in KMU entwickelt. Der Kompass Kreislaufwirtschaft fragt in innovativer Weise die wichtigsten Handlungsfelder zur Umsetzung einer effizienten Kreislaufwirtschaft für österreichische Produktionsbetriebe (Schwerpunkt KMU) in einem Online-Fragebogen ab und ermöglicht auf Basis eines theoriebasierten Bewertungsschemas den Betrieben, mit vertretbarem Aufwand ihre Circular Economy Readiness einzustufen.
Mechanisches Recycling von Kunststoffen: Von Abfall-Kunststoffen zu hochwertigen, spezifikationsgerechten Rezyklaten (circPLAST-mr)
Das Leitprojekt circPLAST-mr verfolgt die folgenden 4 Hauptziele: (1) Aufspüren und Erforschen bisher nicht genutzter Potentiale für das mechanische Kunststoff-Recycling, (2) Festlegung und Austestung dafür zentraler Verfahrensschritte im Labor/Pilot-Maßstab, (3) Nachweis für die öko-effiziente Marktfähigkeit erhöhter Rezyklat-Kunststoffmengen, und (4) Nachweis der Skalierbarkeit der Labor/Pilot-Verfahrensschritte auf den Produktionsmaßstab.
MeteoR - Mechanisch-thermochemische Verfahrenskombination für das Recycling von Feinfraktionen aus Abfallbehandlungsanlagen
Bei der Behandlung von Abfällen fallen große Mengen an Feinfraktionen an, die bisher aufgrund ihrer Heterogenität und Beschaffenheit nicht verwertet werden. Diese Feinfraktionen enthalten jedoch eine ganze Reihe von Materialien, die wertvolle Ressourcen darstellen. Das Projekt MeteoR zielt darauf ab, durch Kombination von mechanischen und thermochemischen Verfahren eine Nutzung aller Bestandteile (mineralische, metallische und organische) von Feinfraktionen zu ermöglichen um Stoffkreisläufe zu schließen und dadurch einen bedeutenden Beitrag zur Weiterentwicklung der Kreislaufwirtschaft und Reduktion der CO2 Emissionen in Österreich zu leisten.
NaKaReMa - Nachhaltigkeitsverbesserung von Kabelummantelungen durch regionale, biobasierte, und rezyklierte Materialien
Das Projekt NaKaReMa behandelt ganzheitlich Kabelummantelungen für Automobilanwendungen und deren Verbesserung hinsichtlich der Nachhaltigkeit. Hierzu werden verschiedene Ansätze untersucht – sowohl regionale Rohstoffquellen zur Reduktion der Transportwege als auch biobasierte Rohstoffe, um die Abhängigkeit von Erdöl zu reduzieren. Ebenso wird die Nutzung von Rezyklaten aus Kabelummantelungen zum Schließen des Kreislaufs mittels Recycling untersucht.
Nachhaltige katalysatorbeschichtete Elektroden für eine effiziente AEM-Elektrolyseurproduktion (SAEP)
Das Projekt konzentriert sich auf die Entwicklung von Anionenaustauschmembran-Elektrolyseuren (AEMEL) für eine kostengünstige Herstellung von grünem Wasserstoff durch die Entwicklung von Katalysatoren ohne Platingruppenmetalle. Unter der Leitung der TU Graz und mit den Partnern Joanneum Research und Duramea konzentriert sich das Projekt auf die Herstellung von Elektroden mit verbesserter Leistung und Haltbarkeit mittels skalierbarer Rolle-zu-Rolle-Technologien. Innovative Vor-/Nachbehandlungs- und energieeffiziente Trocknungsmethoden gewährleisten möglichst fehlerfreie und korrosionsbeständige Elektroden. Die Lebenszyklusanalyse des Herstellungsprozesses integriert die Prinzipien der Kreislaufwirtschaft und optimiert Ressourceneffizienz sowie minimiert Abfälle und fördert so eine nachhaltige und leistungsstarke AEMEL-Elektrodenproduktion in Österreich.
NatMatSave30! – Ersatz von natürlichen, mineralischen Rohstoffen zur Erreichung der material-footprint-Ziele ab 2030!
Hochofen-Schlacke (HOS) ist ein Abfallprodukt aus der Stahlherstellung und fällt regelmäßig und in großen Mengen an. Sie soll natürlich abgebaute, mineralische Rohstoffe ersetzen. Dies trifft auch auf Calciumcarbonate zu, die in der Bauindustrie verwendet werden und dort etwa 50 % des heimischen Materialverbrauches von 167 Mio. Tonnen darstellen. Durch Nassvermahlung der HOS sollte diese über Rekarbonatisierung auch wieder rasch CO2 aus der Umgebung aufnehmen können.
PET2More – Biotechnologisches Upcycling von PET Kunststoffabfällen als Beitrag zur schrittweisen Reduzierung der erdölbasierenden Rohstoffabhängigkeit
Ziel des Projekts PET2More ist die Entwicklung eines biotechnologischen Prozesses zum Upcycling von PET-Kunststoff-Monomer Abfällen. Dabei sollen bis dato unbekannte und nicht verfügbare Decarboxylase-Enzyme für die Umwandlung von Terephthalsäure und 2,5-Furandicarbonsäure in wertvolle Chemikalien wie Benzoesäure und Furan-2-carbonsäure identifiziert, charakterisiert und mittels Enzym Engineering optimiert werden.
PVReValue – Ganzheitliches Recycling von Photovoltaik-Modulen
Das Forschungsprojekt PVReValue verfolgt einen neuen Ansatz zum ganzheitlichen Recycling von Photovoltaik-Modulen, basierend auf einem innovativen mehrstufigen Verbundtrennverfahren, das im Zuge des Projektes entwickelt wird. Durch das mehrstufigen Trennprozess und die neuartige Kombination von modernen Aufbereitungsverfahren soll eine Recyclingquote von mehr als 95 Gew.-% erreicht werden.