Projects
There are 48 results.
Hemp Ski, Recyclable ski manufacturing from hemp, bio-resin and waste streams
In industrial production for alpine skis, epoxy resins of fossil origin and pre-impregnated glass fiber reinforcements are processed today. Innovations that replace environmentally critical materials in skis with biogenic substitute materials with an improved environmental balance have so far been limited to the production of small series. This circumstance motivated the consortium to develop a solution for a circular bioeconomy with the HempSki project, which will also make industrial ski production from renewable raw materials and waste streams possible in the future.
KAFKA - Development of cascade reactions for a circular economy
KAFKA aims to expedite the development of biorefinery processes and showcase the potential of process cascades for producing high-quality chemical products from biogenic resources/waste. The central element of the project is an innovative reactor platform that flexibly combines biotechnological, electrochemical, and thermal processes. Investigations into new process cascades to enable a circular economy are thereby accelerated.
KI4COMP - AI-based prediction of moisture distribution in composites
The project aims to develop an AI model for predicting moisture distribution and the mechanical properties of composite materials under various environmental conditions. By using integrated sensors and machine learning, more precise and easily accessible predictions can be achieved. This facilitates material development, reduces testing efforts, and promotes sustainable innovations through the increased use of natural fibers.
KRAISBAU - Development of AI tools for a transformation to a circular economy along the life cycle of buildings
The BMK lead project KRAISBAU is a collaboration of 32 partners for the realization of a sustainable and circular construction industry. The project focuses on the development and implementation of AI-supported solutions in circular construction along the entire value chain. The knowledge gained is disseminated through factsheets, roadmaps and training courses with the aim of establishing scalable and efficient approaches for existing buildings.
LightCycle
Fiber-reinforced thermoplastic composite components with low weight, so-called lightweight components for transport and mobility, lead to significant CO2 savings. Despite established production technologies and weight savings, further progress in lightweight construction is increasingly difficult because the sustainability of these products is currently not given due to the unresolved recycling problem, although the regulations require, among other things, 85 % recycling of an end-of-life vehicle.
MeteoR – mechanical-thermochemical process combinations for the recycling of fine fractions from waste treatment facilities
In waste treatment plants large quantities of fine fractions are generated. Due to their heterogeneity and properties, these fractions are currently not used although they contain a whole range of materials that represent valuable resources. The aim of the project MeteoR is to enable the utilization of all components (mineral, metallic, and combustible) of fine fractions by combining mechanical and thermochemical processes, to close material cycles and to significantly contribute to the further development of the Austrian circular economy and the reduction of CO2 emissions.
NNATT - Sustainable use of excavated materials from civil engineering and tunnelling using sensor-based technologies
The holistic system developed in the NNATT project for the sustainable utilisation of excavated materials starts with the geology and extends through the construction process to recycling. With the help of sensor-based real-time analyses and an AI-supported decision matrix, excavated materials are separated and further developed into customised products.
NaKaReMa - Improving the sustainability of cable sheathing through regional, bio-based and recycled materials
The NaKaReMa project takes a holistic approach to cable sheathing for automotive applications and their improvement in terms of sustainability. To this end, various approaches are being investigated - both regional raw material sources to reduce transport routes and bio-based raw materials to reduce dependence on crude oil. The use of recyclates from cable sheathing to close the cycle through recycling is also being investigated.
NatMatSave30! – substitution of naturally mined raw materials to achieve material-footprint goals in 2030!
Blast furnace slag (BFS) is a waste product in a steel manufacturing process and is available regularly and in huge amounts. It should substitute naturally mined, mineral raw materials. This means also calcium carbonates, which are used in building industry and are responsible for ca. 50 % of the domestic material consumption of 167 Mio tons. By wet-milling BFS it’s oxides should be able to form calcium carbonate again by recarbonatisation with CO2 from the surrounding atmosphere.
OPENing Re-Use – Optimal planning decisions in the re-use sector
In an operational context, companies in the circular economy are faced daily with the question of whether a used product should be repaired, remanufactured, refurbished or recycled. The decision on what to do with used products is fraught with a great deal of uncertainty and must be made on a case-by-case basis - product-individually and depending on factors such as brand, condition, age, demand or recycling possibilities. As part of the "OPENing Re-Use" project, a business planning tool is being developed to support companies in their re-use planning, thereby increasing the efficiency of re-use processes and making re-use activities even more competitive with the purchase of new products.
PET2More - Biotechnological upcycling of PET plastic waste as a contribution to the gradual reduction of petroleum-based raw material dependency
The aim of the PET2More project is to develop a biotechnological process for upcycling PET plastic monomer waste. To this end, previously unknown and unavailable decarboxylase enzymes for the conversion of terephthalic acid and 2,5-furandicarboxylic acid into valuable chemicals such as benzoic acid and furan-2-carboxylic acid are to be identified, characterized and optimized by means of enzyme engineering.
PVReValue – Holistic recycling of photovoltaic modules
The PVReValue research project is pursuing a new approach to the holistic recycling of photovoltaic modules, based on an innovative multi-stage composite separation process that is being developed in the course of the project. The multi-stage separation process and the novel combination of modern treatment processes are expected to achieve a recycling rate of more than 95 wt.-%.
PolyBacTex - Converting mixed textile waste into recycled fibres and cellulose for sustainable production
The project PolyBacTex is developing a solution for recycling of used mixed textiles by chemically separating and biotechnologically upgrading the individual fibre types (cellulose and polyester). This allows cellulose fibres to be recovered and returned to the fibre production process.
QB3R – Quality controlled high‐performance components consisting of 100% bio‐based resins with high potential in repair and recycling
The QB3R project aims to develop an epoxy resin system having a 100% bio‐based carbon content. The QB3R resin will be processable with various different manufacturing techniques resulting in high performance components for long‐lasting material goods.
RE-FORM earth - Earth Building for Building Sector Transformation
In order to promote the use of earth, the RE-FORM earth project is creating a planning basis for the construction of structures and buildings containing earth. In order to counter uncertainties regarding the health effects of earth building materials, a comprehensive program is being carried out to investigate radiation exposure and potential pollutants in earth. By erecting a temperature-controlled rammed earth wall in a test room with subsequent measurements, the aim is to determine the extent to which the material can contribute to healthy indoor air due to its moisture-regulating properties and help to balance out energy peaks.
RE:STOCK INDUSTRY - Digital framework for the circular reuse of existing structures for vertical production
RE:STOCK INDUSTRY is developing AI-based Scan-to-FEM methods, vertical 3D production concepts, and an interactive AR application for precise capturing, modelling, and analysis of industrial buildings' load-bearing structures. The aim is to determine the potential of the structure for reuse, modernization, and vertical expansion, considering aspects of circular economy.
ReKEP
ReKEP relies on reusable transport containers instead of (disposable) cardboard packaging. These should be affordable, effective and flexible to use in the CEP sector (courier, express, parcel). The logistics processes involved are examined and adjustments are proposed to achieve economic, ecological and social sustainability.
ReNew PV - Coating to increase the service life of PV modules with damaged backsheets
The ReNew PV project focuses on the development of lifetime-extending coating solutions for the backsheets of PV modules. The focus is on a protective coating to restore the electrical resistance and on the repair of cracked or mechanically damaged backsheets.
ReTarget - Re-manufacturing and re-purposing of high-quality sputter materials
The project objective is to reduce the energy input in the production of sputtering targets by at least 20 % by direct re-manufacturing of used, precious metal targets. In addition, the utilization rate will be increased from an average of 20-30 % to 70-80 % through a direct re-purpose approach, as well as by optimizing the sputtering process. This will allow a significant reduction of the footprint of the sputtering process.
Road-to-Road/ Verschränkung neuartiger Methoden zur effizienten „Road-to-Road“ Inwertsetzung von Altasphalt
The planned combination of experimental and model-based methods for assessing/describing the behavior of asphalt shall enable the goal-oriented optimization of the performance/durability of recycled asphalt, with the resulting positive effects (CO2 balance, transport distances, landfill volume) being quantified within the project.