Projects
There are 13 results.
BIOCHARm - Assessing the Potential of Biochar in Construction as a Contribution to Climate Neutrality
The project investigates the potential and limits of the use of biochar in the Austrian construction sector. The participating organisations gain valuable insights into the availability and suitability of biogenic material flows, the possible uses of biochar and the possibility of storing atmospheric carbon in the construction sector.
BitKOIN - CO2-reduced binding agent through thermochemical conversion of mineral wool waste combinations
In the BitKOIN project, conceptual, experimental and model research activities are conducted in order to develop a substitute material for ground-granulated blast furnace slag (GGBS). First, mineral wool waste and other mineral residues, which are required as additives to achieve the desired chemistry, are sampled representatively. The materials are then characterized chemically, mineralogically and physically and are additionally classified according to waste regulations. By thermochemical conditioning of the mineral wool waste, combined with the other waste materials, the "Huettensand 2.0" (GGBS 2.0) is developed. The project aims to develop the "Huettensand 2.0" , a durable GGBS substitute.
BuildReUse ‐ 100 percent re‐use and recycling in buildings with short usage cycles
Some buildings, such as supermarkets or office buildings, are often demolished and rebuilt after a few years or at least have their interiors changed, turning large quantities of building components into waste. The BuildReUse project aims to develop circular economy concepts for these buildings and to promote the necessary change in the construction industry.
CSR:H - Circular Social Residency Informationhub
CSR:H is developing an innovative prototype for the survey and evaluation of the potential for the subsequent use of the building stock of social housing developers. Development of an innovative tool that uses archive data to optimize the use of building materials/products after their first phase of use and the long-term planning and operational implementation in social housing. It combines early predictions of the strategic utilization of resources with post-use scenarios and take-back agreements.
CircularBioMat – Recyclable biogenic materials for building installations and supply equipment
As part of CircularBioMat, numerous bio‐based materials – including bio‐polymers reinforced with natural fibers as well as recycled materials – are being tested for their suitability as a replacement for the petroleum‐based polymers that dominate technical building installations (TGA) and supply equipment.
DigiHemp/ Digital technologies for quality assurance and performance enhancement of hemp-based building materials
Development of digital methods for describing, predicting and optimizing the thermal/mechanical properties of composite materials made from bio-based raw materials. Taking into account the complex material morphology as well as the properties of the components for the prediction of building material properties, the overall goal of increasing the use of bio-based building materials shall be achieved.
Earth movement: Clay - a climate- and resource-friendly building material
Manufacturing processes and transport of building materials are energy-intensive and cause high CO2emissions. In addition, many building materials pose a health and disposal problem due to their content of disruptive and harmful substances. Locally available clay can replace conventional materials if appropriately prepared and processed, and helps to save both manufacturing processes and transport routes.
NatMatSave30! – substitution of naturally mined raw materials to achieve material-footprint goals in 2030!
Blast furnace slag (BFS) is a waste product in a steel manufacturing process and is available regularly and in huge amounts. It should substitute naturally mined, mineral raw materials. This means also calcium carbonates, which are used in building industry and are responsible for ca. 50 % of the domestic material consumption of 167 Mio tons. By wet-milling BFS it’s oxides should be able to form calcium carbonate again by recarbonatisation with CO2 from the surrounding atmosphere.
RE-FORM earth - Earth Building for Building Sector Transformation
In order to promote the use of earth, the RE-FORM earth project is creating a planning basis for the construction of structures and buildings containing earth. In order to counter uncertainties regarding the health effects of earth building materials, a comprehensive program is being carried out to investigate radiation exposure and potential pollutants in earth. By erecting a temperature-controlled rammed earth wall in a test room with subsequent measurements, the aim is to determine the extent to which the material can contribute to healthy indoor air due to its moisture-regulating properties and help to balance out energy peaks.
RE:STOCK INDUSTRY - Digital framework for the circular reuse of existing structures for vertical production
RE:STOCK INDUSTRY is developing AI-based Scan-to-FEM methods, vertical 3D production concepts, and an interactive AR application for precise capturing, modelling, and analysis of industrial buildings' load-bearing structures. The aim is to determine the potential of the structure for reuse, modernization, and vertical expansion, considering aspects of circular economy.
Road-to-Road/ Verschränkung neuartiger Methoden zur effizienten „Road-to-Road“ Inwertsetzung von Altasphalt
The planned combination of experimental and model-based methods for assessing/describing the behavior of asphalt shall enable the goal-oriented optimization of the performance/durability of recycled asphalt, with the resulting positive effects (CO2 balance, transport distances, landfill volume) being quantified within the project.
V-Form – Manufacturing unreinforced vaulted concrete floors with variable pneumatic formworks
V-Form is working on the development of vaulted concrete floors in terms of structural design and building physics, as well as on a new formwork system. Thanks to the efficient shell construction, around 70% CO2eq-emissions can be saved compared to reinforced concrete flat slabs. The reusable and variable pneumatic formwork system aims to enable the economical production of the double-curved concrete shells.
fERNkornSAN – decarbonization and renovation with renewable materials of the "Gründerzeit"-building Fernkorngasse 41
Using the example "Gründerzeitgebäude" in Fernkorngasse 41, 1100 Vienna, technical challenges and issues related to phasing out gas and oil as well as adapting to climate change are investigated. A particular focus is placed on the use or resource-efficient and ecological building materials and highly efficient technologies. The results should be the basis for the use for further projects.