Hochfunktionelle Oberflächen für bio(basierte) Materialien mittels industrieller Atmosphärendruck-Plasmabeschichtung

Jürgen M. Lackner, R. Kaindl, W. Waldhauser, S. Chwatal, D. Kopp

Laser & Plasma Processing Leobner Straße 94a 8712 Niklasdorf www.joanneum.at/materials

Gefördert mit Mitteln des Österreichischen Waldfonds

Mit Unterstützung vom

Bundesministerium Land- und Forstwirtschaft, Regionen und Wasserwirtschaft

Bio(basierte) Materialien als Funktionswerkstoffe durch Beschichtung mit atmosphärischem Plasma

nachgiebig, abriebbeständig, brandbeständig, antimikrobiell

elektrisch leitfähig

verschleißbeständig, reibungsreduziert

How to technically use plasma in atmospheric conditions?

What is Plasma?

Atmospheric pressure plasma: a high-energy source

4

InoCoat 3[®] plasma jet with external nozzles for feedstock supply into afterglow region – (right) in operation and (lower left) in CFD simulation of gas tempe-rature (digital process twin).

Plasma cone size: PACVD with HMDSO vs. Plasma spray with Cu

Brenner 1 — Brenner 2 – – – • nächster Zyklus

Preventing oxygen from mixing in atmospheric plasma: Shrouding

Plasma

gas

Direct & selective APPD metallization (plasma spray) for highly electrical conductive coatings - Cu & Zn

8

Optimization of electrical conductivity of APPD copper coatings shown by increasing deposition current and given in correlation to bulk Cu conductivity.

nonmelted particles Cyclic ben-ding testing incl. surface conductivity measurement of APPD Cu coated FFF printed polymer substrates (as substitute for wood) to assess fatigue failure. Top view and cross-section imaging of coated porous FFF polymer samples.

Direct & selective APPD metallization (plasma spray) for highly electrical conductive coatings

Partly biobased concepts with admixture of carbonized wood flour

Comparison: Zn: 0.8-0.9 Ohm

Wear protective MoS₂-C-Zn APPD coatings (plasma spray) on biobased polymers and wood

Partly bio-based concepts for wear protective coatings (plasma spray) on biobased polymers and wood

Nanoclay admixture to PA coatings

coarse PA12-Pulver + 5 % MoS2 + 5 % Montmorillonit-Nanoclay

Partly bio-based concepts for wear protective coatings (plasma spray)

PA11-PTFE coating on PET foil

Plasma curing of sol-gels: antimicrobial & intumescent coating

Optimized sol-gel system: (trimethoxysilyl)propyl methacrylate + ebecryl + (3-aminopropyl) triethoxysilane, 1-hydroxy cyclohexyl phenylketone + benzophenone as photoinitiator

Heat flow simulation on poplar wood substrate for preventing wood damage by overheating during cross-wise APPD curing to

25 μm Epoxy Cu flakes Sol-gel coating Substrate

Cross-section after full infiltration & curing in ORGANOID natural materials without and with flame-retardant

coated / uncoated

Vertical burn tests for sol-gel infiltrated ORGANOID natural materials with extreme intumescence effect (charring) in comparison to untreated reference (right)

	Sample	Abbrand [mm]	Nachbrand [Sek.]	Drips	Pass/ Fail
12 Sek	E1 (low	40	5	0	Pass
	E2 (high	20	0	0	Pass
	REF	00	00	00	Fail
60 Sek	E1 (low	110	0	0	Pass
	E2 (low	80	0	0	Pass
	REF	160	00	00	Fail

Sol-Gel curing - technological background of INO/JR patent

Super-hydrophobic layers on wood & fully biobased precursors for future R&D

TiO₂/HAp + HMDSO cover on spruce and larch (water contact angle up to 150°)

PECVD of essential oils & extractives

20-60 different components with antimicrobial effect in nature

- Terpenes and terpenoids
- Aromatics and aliphatics

Pinene Terpinen-4-ol y-Terpiner

Demonstrators - prototypes - product transfer

selective metallization (brown: Cu, grey: Zn) for conductor tracks

low-friction coatings for easy-sliding

16

antimicrobial, flame-retardant APPD cured sol-gel route

Robot based coating

3- to 5-axis plasma jet + substrate handling

Roll-to-roll coating - lab-scale

Roll-to-Roll winding system with integrated Sheet-to-Sheet capability incl. accurate foil & sheet positioning

INDCON

HMI

Green fingerprint of atmospheric plasma -Life Cycle Analysis: APPD vs. PVD (sputtering)

% MoS2, 1 kg APPD - 25%

Zn+25%MoS2

C+50%

44.61

700.34

1.11E-02

44.42

• Deposition of 1000 m²/year over 10 years

20

- Film with a friction coefficient of ~1E-13 m³/N m on PA12 (APPD: 50 μm C-MoS2-Zn, PVD: 4.7 μm C-MoS₂)
- Material efficiency: APPD: 70%, PVD: 10 % %

Thank you for your attention!

JOANNEUM RESEARCH Forschungsgesellschaft mbH

MATERIALS Institut für Sensorik, Photonik und Fertigungstechnologien

Laser und Plasma-Technologien

Leobner Straße 94 A-8712 Niklasdorf Tel. +43 316 876-3304 MATERIALSNiklasdorf-Sek@joanneum.at

www.joanneum.at/materials

Shaping the future, together

www.joanneum.at/materials